【中止】KGRI Lecture Series:(2020.3.10開催) "Structure and Dynamics of Biomembranes"
2020.03.10今般の新型コロナウイルス感染拡大の状況等を踏まえ、開催を中止することといたしました。参加をご予定いただいていた方には、深くお詫び申し上げます。
慶應義塾大学グローバルリサーチインスティテュート(KGRI)では、国際的な研究・教育交流を図ることを目的として、最先端の研究・教育に携わる方を国内外よりお招きして講演会を開催しています。
今回は、オックスフォード大学のMark S.P. Sansom教授をお招きして、"Structure and Dynamics of Biomembranes"と題して講演いただきます。
日 時:2020年3月10日(火)14:30-17:00 開場14:00
会 場:慶應義塾大学 矢上キャンパス 16 A棟 3階(厚生棟大会議室)
主 催:グローバルリサーチインスティテュート(KGRI) 創造クラスター
対 象:どなたでもご参加いただけます。
定 員:100名
言 語:英語(同時通訳なし)
その他:参加費無料、事前登録不要
講演概要:
Part1: Membrane protein interactions with lipids as viewed by molecular simulations.
Interactions with lipids are important in the function of membrane proteins and the organization of membranes. Molecular simulations allow us to explore structural, energetic, and dynamic aspects of these interactions. Coarse-grained (CG) simulations in mixed lipid bilayers allow identification of lipid interaction sites, which may be probed further by estimation of free energy landscapes to explore lipid specificity, and by atomistic simulations to refine models of the structure and dynamics of lipid binding. This approach has been applied to a number of membrane proteins, including transporters, ion channels and receptors. Simulations of lipid interactions with Class A GPCRs has revealed binding sites for cholesterol and PIP2. Interactions with PIP2 have been shown to be dependent on the activation state of the receptor, suggesting a functional role for the lipid via allosteric modulation. Interactions of lipids with other classes of GPCRs have been explored, including of cholesterol and PIP2 with the Class F GPCR Smoothened. Our analysis of the interactions of lipids with ion channels have also focussed on cholesterol and PIP2, both of which are allosteric modulator of a number of ion channel families. PIP2 interactions have been characterised for Kir channels, and more recently for members of the TRP channel family. Simulations of large membrane systems containing multiple copies of Kir channels suggest that the lipid composition of the bilayer can modulate channel-channel interactions within crowded membranes.
Duncan, A., Song, W. & Sansom, M.S.P. (2020) Lipid-dependent regulation of ion channels and GPCRs: insights from structures and simulations. Ann. Rev. Pharmacol. Toxicol.60:31-50.
Part2: Water and Ions in Membrane Nanopores and Channels: Insights from Molecular Simulations.
Molecular dynamics simulations can be used to explore the dynamic behaviour of water within nanopores and biological channels in lipid bilayer membranes. Simulation studies of the behaviour of water in idealised models of nanopores have revealed aspects of the organization and dynamics of nano-confined water, including wetting/de-wetting in narrow hydrophobic nanopores. Simulation studies of nanopores reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favour water flow whereas narrower hydrophobic pores may show de-wetting. Simulation studies of the behaviour of water in a range of biological nanopores will be discussed, including β-barrel protein nanopores [1] and ion channels [2]. Water is shown to play a key role in ion transport in biological channels, and in hydrophobic gating of ion channels. An overall picture emerges whereby the behaviour of water in a nanopore or channel may be predicted as a function of its hydrophobicity and radius [3]. This informs our understanding of the functions of diverse of channel structures and will aid the design of novel nanopores.
References
[1] Trick, J.L., Wallace, E.J., Bayley, H., & Sansom, M.S.P. (2014) Designing a hydrophobic barrier within biomimetic nanopores. ACS Nano 8: 11268-11279.
[2] Trick, J.L., Chelvaniththilan, S., Klesse, G., Aryal, P., Wallace, E.J., Tucker, S.J. & Sansom, M.S.P. (2016) Functional annotation of ion channel structures by molecular simulation. Structure 24: 2207-2216.
[3] Rao, S., Klesse, G., Stansfeld, P.J., Tucker, S.J., & Sansom, M.S.P. (2019) A heuristic derived from analysis of the ion channel structural proteome permits the rapid identification of hydrophobic gates. PNAS 116: 13989-13995.
講師プロフィール:
Department of Biochemistry, University of Oxford所属
ポスター
本件に関するお問い合わせ
理工学部 泰岡顕治(e-mail: yasuoka[at]mech.keio.ac.jp)
"[at]"を"@"に変更して送信してください。